A Game-based Learning Framework for Controlling Brain-Actuated Wheelchairs

Rolf-Magnus Hjørungdal1, Filippo Sanfilippo2, Ottar L. Osen1, Adrian Rutle3, and Robin T. Bye1

1Software and Intelligent Control Engineering (SoftICE) Laboratory, Faculty of Engineering and Natural Sciences, NTNU in Ålesund, Norway
email: robin.t.bye@ntnu.no | web: blog.hials.no/softice
2NTNU in Trondheim, Norway
3Bergen University College, Norway

ECMS 2016, Regensburg, Germany, 31 May–3 June 2016
Overview

Introduction

Method

Results

Video

Q & A
Introduction
Background

— paraplegic patients require wheelchairs for mobility
— some patients require motorised electrical wheelchairs
 • tetraplegics
 • upper body paraplegics
 • sufferers of amyotrophic lateral sclerosis (ALS)
 • others
— if very serious paraplegia, brain control interface (BCI) may be an option alone or together with other control inputs (e.g., voice, eye tracking and blinking, etc.)
— sufficient learning/training required before real-word use
— BCI training can be repetitive and boring
— a game-based virtual environment (VE) can motivate user, be adaptable and flexible, offer variety of virtual scenarios,
Electroencephalography (EEG)

— measurements of the natural electric potential on the scalp
— reflects number of synchronous neural discharges
— EEG frequency bands:
 • delta (< 4 Hz)
 • theta (4–7 Hz)
 • alpha (8–15 Hz): alert and cognitive states
 • beta (16–31 Hz): purposive movements
 • gamma (> 32 Hz)

⇒ delta and beta bands most relevant for stroke rehabilitation
— several good low-cost commercial-off-the-shelf (COTS) EEG equipment exists, e.g., Emotiv EPOC EEG
Motor-imagery brain-computer interface (MI-BCI)

— EEG-based MI-BCI can help paretic or paralysed stroke survivors to interact using brain waves instead of muscles
— reports on EEG-based MI-BCI combined with robotic feedback neurorehabilitation for stroke patients
— event-related desynchronization/synchronization in sensorimotor oscillatory rhythms associated with MI
— use rhythms/frequencies as inputs to BCI
— MI can replace actual physical task performance while still induce neural plasticity changes, e.g., brain wave control of a wheelchair in a computer game instead of physical joystick control
Related work

— 2005 (Tanaka et al. [1]):
 - recursive training algorithm to generate recognition patterns from EEG signals
 - used a real physical motorised wheelchair
 - slow processing times ⇒ required external assistance for stopping wheelchair during EEG detection and pattern matching

— 2007 (Craig and Nguyen [2]):
 - real-time EEG classification system
 - EEG control as supplement to head movement control
 - training with physical wheelchairs is slow, non-flexible, require medical staff during exercises

— 2007 (Leeb et al. [3]):
 - used virtual wheelchair and training environment
 - did not include game-based learning elements to improve motivation
Aim

— develop open-source game-based learning framework for control of brain-actuated wheelchairs simulated in a VE
— implement two modes: manual (asynchronous) and autopilot
— use low-cost, adaptable, flexible commercial-off-the-shelf (COTS) components
— demonstrate fast virtual prototyping (matter of months)
— implement a preliminary artificial neural network for EEG pattern recognition and control

Main components of system framework

— Unity 3D game engine for VE
— Emotiv EPOC EEG headset for brain wave control
Overview

Introduction

Method

Results

Video

Q & A
Method
Game-based methodology

— combine enjoyable game aspects while learning
— key aspects of game-based learning in a VE:
 • **safe risks**: no dangerous consequences of mistakes in VE
 • **goal-based tasks**: stimulate learning through achievements
 • **incremental learning**: adapt to user progression
 • **timed events**: use game times as incentive for improvement
— employ **game levels** to achieve the above
Game levels

Five game levels have been implemented in our solutions:

1. learning/practice of **single command** (’forward’) in drag race
2. **switching of commands** while navigating in labyrinth
3. learning to handle **safety mechanisms**
4. **difficult/advanced tasks** for improving navigation skills
5. integrated the above in **realistic real-world urban navigation**
EEG data acquisition

— Use the Emotiv EPOC EEG headset

- high-resolution, multi-channel, portable system
- bluetooth wireless transmission to computer
- 14 EEG channels placed as in 10-20 system:
Training of mental commands

— use Emotiv software for EEG pattern recognition
— build up library of trained mental commands
— use Emotiv API to map commands into controls in Unity, e.g. control virtual electrical wheelchair (manual mode) and menu system (autopilot mode)
— learn four basic EEG commands in Emotive training software: push, left, right, pull
— map basic commands to Unity controls dependent on mode

<table>
<thead>
<tr>
<th>command</th>
<th>manual</th>
<th>autopilot</th>
</tr>
</thead>
<tbody>
<tr>
<td>push</td>
<td>forward</td>
<td>choose</td>
</tr>
<tr>
<td>left</td>
<td>rotateLeft</td>
<td>down</td>
</tr>
<tr>
<td>right</td>
<td>rotateRight</td>
<td>up</td>
</tr>
<tr>
<td>pull</td>
<td>toggle</td>
<td>toggle</td>
</tr>
</tbody>
</table>
Manual and autopilot modes

— manual mode: EEG brain wave control of virtual electrical wheelchair

— autopilot mode:
 • user sets a target geographical location
 • a list of predefined locations is stored in the system
 • A* algorithm finds shortest path
 • wheelchair moves to target location in safe manner and avoiding obstacles

— only four brain control commands pose a challenge for navigating menus and switching modes

— employ “music player-like” navigation
 • scroll up and down a list of options
 • choose item or submenu
 • return to previous menu or switch mode with toggle
Preliminary artificial neural network (ANN)

— Emotiv EEG pattern recognition is advanced and powerful . . .
— . . . but proprietary and closed source code
 ⇒ motivates examining own, custom ANN
— designed simple experiment for preliminary ANN
 • classify two types of EEG states: *meditation* and *push*
 • employ Matlab Neural Network Toolbox
 • collect 200 raw EEG samples (10 sec) with these two states
 (training set: 140, validation set: 30, test set: 30)
 • 7 EEG channels \times 6 frequency bands = 42 inputs
 • 21 neurons in hidden layer
 • two output classification states
Overview

Introduction

Method

Results

Video

Q & A
Results
Game-based learning framework

Two main components:

- Emotiv EPOC EEG headset
- Unity 3D game engine
Summary of results

— large and realistic urban 3D virtual world
— five incrementally more difficult game levels for game-based learning and practicing of brain control of the wheelchair
— no paraplegic patients have tested the system
— three young and healthy participants are able to successfully use and complete all five game levels
— autopilot works as intended for five predefined locations
— safety measures: collision avoidance and rolling protection
— ANN successfully classifies meditation and push EEG states with 0–4% error rate
— proposed framework is low-cost, uses COTS equipment, and is easily extendable, flexible, and adaptable
Level 1

Learning/practice of single command (‘forward’) in drag race
Level 2

Switching of commands while navigating in labyrinth
Level 3

Learning to handle safety mechanisms
Level 4

Difficult/advanced tasks for improving navigation skills
Level 5

Integrated tasks in realistic real-world urban navigation
Example scatter plot for ANN classification
Future work

— safety issues extremely important and difficult in dynamic uncertain real-world environment
 • collision avoidance and rolling protection be refined and made more robust
 • add emergency interruption/override for “bad” user control input and in autopilot mode
 • a cue-based (synchronous) semiautonomous mode, where system helps user by guessing next action and provides suitable cue
 • add steady-state visually evoked potential (SSVEP) stimuli for more reliable control signals
 • use artificial intelligence (AI) for the above
— reverse-engineer closed source Emotiv software for custom needs
— better adaptability to user progression
— use framework for virtual prototyping of custom-made electrical wheelchairs designed for EEG brain control
— cooperate with medical staff and patients to improve framework and perform clinical trial
Overview

Introduction

Method

Results

Video

Q & A
Video

blog.hials.no/softice
(4:04)
References

Thank you for listening!

Questions?