Rolf-Magnus Hjørungdal, Filippo Sanfilippo, Ottar L. Osen, Adrian Rutle, and Robin T. Bye. A Game-based Learning Framework for Controlling Brain-Actuated Wheelchairs. In Proceedings of the 30th European Conference on Modelling and Simulation (ECMS'16), pp. xx--yy, 2016. Download PDF.


Paraplegia is a disability caused by impairment in motor or sensory functions of the lower limbs. Most paraplegic subjects use mechanical wheelchairs for their movement, however, patients with reduced upper limb functionality may benefit from the use of motorised, electric wheelchairs. Depending on the patient, learning how to control these wheelchairs can be hard (if at all possible), time-consuming, demotivating, and to some extent dangerous. This paper proposes a game-based learning framework for training these patients in a safe, virtual environment. Specifically, the framework utilises the Emotiv EPOC EEG headset to enable brain wave control of a virtual electric wheelchair in a realistic virtual world game environment created with the Unity 3D game engine.

You are here: Home Research Neuroengineering ECMS 2016 EEG wheelchair control paper abstract